構造と識別~構造推定と計量経済学に関するトピックを紹介する

踏み込んだ構造推定の日本語の文献がネットに転がっておらず、「構造推定」という響きのかっこよさに夢を抱いたりする人や、響きのうさんくささに勘違いしている人も多いので、土地勘のある自分が日本語でまとめます。気が向いたら。全ての記事はベータ版でござい。

構造推定のオンライン教材まとめ[適宜追加]

以下では構造推定のオンライン教材をまとめる。

 

構造推定やりたいんだけど、勉強の始め方が分からない、という言い訳はそろそろできなくなってしまいました。少なくとも、Ph.D. IO topic courseの一年分(3h*12weeks*2semesters)ぐらいのビデオレクチャーは出そろってきました。

 

 

Yale(Berry, Haile)のIOはこっちで、

https://www.aeaweb.org/conference/cont-ed/2021-webcasts

 

Harvard, Northwestern (U Penn), Austin(Pakes, Nevo, Ackerberg)のIOはこっち。上にはない生産関数の話もAckerbergがしている。

https://www.aeaweb.org/conference/cont-ed/2017-webcasts

 

しかも、Nevoは21年冬に出る予定のIOハンドブックの需要推定のパートのレクチャーもしている。

www.chamberlainseminar.org

 

あとメインの手法どころでウェブレクチャーがないものは、マッチングとネットワーク形成ぐらいでしょうか。

 

このあたりの手法の概観図は頭に入っていて、実装もそれなりにしてみたあとに、制度知識とデータセットの塩梅で使える(使いたい)手法を掘り下げていく、ハンドブックIO最新版とハンドブックEcon of Marketingを読む、というのが基本でしょうか。

 

Welcome to ようこそ、殺し合いの螺旋へ!!

 

俺はまだ、強いのか? - 人と組織と、fukui's blog

構造推定をしたい匿名学生の実地体験ルポ(続報2)

やあ (´・ω・`)ようこそ、バーボンハウスへ。

以下略。

 

 

 

ohtanilson.hatenablog.com

 

上では最後をこうまとめていた。

 

1(+ドラ2)+3+2+0+2+5(-4+裏ドラ2)=13翻前後がベースライン、全部完結するまでは当然あがれませんが。

 

結果、想定したバッドエンドのパスに落ちている(「パラメタの下限しか識別できないじゃん」と分かった)ので、ある意味予定通り。これがバックワードでやってみた治験結果。イメージとしては数え役満を目指して、13翻以上を取る予定だった。引用してるジャーナルの論文たちが自分の中では最低15翻って感じ。マーケティングとか書き方とかいろいろあるにしろ。

遺言書としてほにゃイヤーペーパとして全部結果まとめてるし、結果をLatexに自動生成するコードも書いてるし、reproduceableにはしてきたし、どこまで翻が変わるでしょうかねえ。

 

とりあえず、結果とコードはgithubにpushして、指導教官のテクニカルなポイントの最終チェックを経て、ウン十万かけて英文校正に出して。一週間かけて修正して再校正お願いして、ページ制限はだいたい本文40pageなのでそれに合わせたり、細かい点を修正した。そして、WPにして、指導教官の薦めるジャーナルからfirst shotを打ったところである。

 

とりあえず、一個は閉じた。閉じることが一番大事。モデルの推定アルゴリズムが複雑かつ分割できない処理になる場合と、いわゆるpower setが理論で入るモデルの実装は気を付けようと思った。感触的には、ちょっとだけ結果の説明がクリアにできたので、1翻アップの14翻で、意外と指導教官のカウントと近い。素性を知ってる方はWPへのコメントお待ちしております。

 

とりあえず、JMPも同じ産業のWPより後の時代をやる予定。raw dataの打ち込みと前処理と制度知識からやってるが、効率的にプロジェクトマネジメントするすべをだいぶ共著から学んだので多少見通しが立ってる気がする。

 

 

 

反実仮想のアイデア Igami, M., & Uetake, K. (2020). Mergers, innovation, and entry-exit dynamics: Consolidation of the hard disk drive industry, 1996–2016. The Review of Economic Studies, 87(6), 2672-2702.

描きたい反実仮想を具体的にイメージしよう。

 

Igami, M., & Uetake, K. (2020). Mergers, innovation, and entry-exit dynamics: Consolidation of the hard disk drive industry, 1996–2016. The Review of Economic Studies87(6), 2672-2702.

 

Abstractにまとめられた反実仮想の結果は以下。

the current rule-of-thumb policy, which stops mergers when three or fewer firms exist, strikes approximately the right balance between pro-competitive effects and value-destruction side effects in this dynamic welfare trade-off.

 

この答えを得るためにバックワードで順に組み立てていく。

1. 答えたい問い:investigate the balance between pro-competitive effects and value-destruction side effects in this dynamic welfare trade-off.

2. 答えたい反実仮想政策:CS+PS+FCと合計の厚生評価

(1) changing the threshold number of firms

(2) If the HDD industry were disappearing faster

(3) Optimal ex-post (“surprise”) policy

 

3. 最終的に示したい図: 論文内のFig6の異なるNでの厚生評価の図

f:id:ohtanilson:20210809062309p:plain


とTable 7のbyproductで得られる厚生評価以外の重要な均衡結果(企業数やイノヴェーションレベルや合併数)

f:id:ohtanilson:20210809062353p:plain

 

 

4. 問いに答えるためにモデルに入れたい要素(anecdotal evidenceとfeasibilityから考える):

(0). そもそも厚生評価するのでそれができる需要供給モデル選ぶ。

(1) changing the threshold number of firms: 反実仮想のmerger blockを入れて再計算すればいけそう。

(2) If the HDD industry were disappearing faster: demandが数年後にゼロに収束するとモデルに入れて、動学の再計算すればいけそう。

(3) Optimal ex-post (“surprise”) policy: 途中でmerger blockがスイッチする形で表現できそう。

反実仮想のアイデア:Igami, M. (2018). Industry Dynamics of Offshoring The Case of Hard Disk Drives. American Economic Journal Microeconomics, 10(1), 67-101.

描きたい反実仮想を具体的にイメージしよう。

 

Igami, M. (2018). Industry Dynamics of Offshoring The Case of Hard Disk Drives. American Economic Journal Microeconomics, 10(1), 67-101.

 

Abstractにまとめられた反実仮想の結果は以下。

build and estimate a dynamic offshoring game with entry/ exit to measure the benefits and costs of offshoring, investigate the
relationship between offshoring and market structure, and assess the
impacts of hypothetical government interventions

 

この答えを得るためにバックワードで順に組み立てていく。

1. 答えたい問い:investigate the relationship between offshoring and market structure,

2. 答えたい反実仮想政策:CS+PS+FCと合計の厚生評価

(1) No offshoring

(2) Unilateral US intervention

(3) Government Policies in Nash Equilibria

 

3. 最終的に示したい図: 論文内のFig7のY軸を企業数変化、X軸を時間にした図を描きたい。

f:id:ohtanilson:20210809040700p:plain

 

Fig8のような国ごとの政策変更による厚生評価の変動を二国にしぼって印象的なプロットを描きたい。

 

f:id:ohtanilson:20210809040820p:plain

 

 

4. 問いに答えるためにモデルに入れたい要素(anecdotal evidenceとfeasibilityから考える):

(0). そもそも厚生評価するのでそれができる需要供給モデル選ぶ。

(1). offshoring: offshoringという選択肢を持たない設定に変えてやればそう解釈できそうだが、offshoring costを4倍にしてやって解きなおす方法でもやれる。

(2).Unilateral US intervention:事後的にアメリカとそれ以外で分けて、アメリカのoffshoring costだけ4倍にして解きなおせばいけそう。

(3)Government Policies in Nash Equilibria: アメリカの(2)の動きに対応して、日本のoffshoring costも動かす。9grids * 9grids=81 scenariosで解きなおす外挿的なやり方でstrategicな要素を近似できそう。

 

構造推定で、改訂用に各工程をどう分割するか。

構造推定における大きな障害のひとつは、一つの工程における計算スピードが全工程に伝播することである。

 

論文の分析工程自体は、章立てと同じく

- データの前処理と記述統計

- 誘導系的な分析と結果

- 構造推定モデルの記述

- 構造推定モデルの特定化と推定手法の記述

- 実データを使った構造推定モデルの結果

- 推定結果を元にした反実仮想

が本文に置かれる。また、本推定の前かAppendixに

- シミュレーションデータの生成過程の記述(=反実仮想の解き方でもある)

- シミュレーションデータの比較静学(=反実仮想がどう結果を出すかの記述でもある)

- 識別のチェック(点推定ならここはなくてもよいかも)

- シミュレーションデータでのfinite sampleでの推定精度検証(biasとRMSE)

が挿入される。

データの前処理と記述統計と誘導系の結果は、仮に前処理を調整するにしても数分で生データからLatexアウトプットまで終了するはずなので省略する。「構造推定モデルの記述」自体も、均衡の特徴づけと識別可能性までは紙とペンだけで完結するので、他パートと依存しない(紙とペンで完結しない場合はここにも作業が伝播する)

 

非常に面倒なのが、

- 構造推定モデルの特定化と推定手法の記述

 から

- シミュレーションデータでのfinite sampleでの推定精度検証(biasとRMSE)

までのパートが「特定化」の変更の影響を反映する点である。例えば、X_1という変数に加えてX_2という変数を加えるという一見単純な追加処理も、コードが変数次元に自動で合わせる書き方になっていない限り、それなりの修正が必要になる。あるいは、より複雑な特定化の変更、例えば、行動経済学的な割引因子パラメタなどを追加で入れるとすると、そもそもそれが識別できるのかが研究者本人にもわからない。また、一般的にはmisspecification errorが必ず存在するので、エコノメ方面を推すのならばその頑健性をケアする必要がある。

ひとまず「信頼できる先行研究からわかっている絶対にうまくいく特定化、データ生成、推定」を再現してみて、その特定化にひとつずつ要素を加えていくというのが鉄則である(が、トップ5ですらそれが検証されていないケースもそれなりにあるし、だいたいOnline Appendix行きで、チェックする人も手法を使いたい数十人と厳密性にこだわる一部の流派なので世知辛い)。

 

特定化周りの工程は以下のような製造ライン(Julia AtomやRstudioのようなIDE、物理的なPCなどの作業環境)に分けるのが一つの効率化である。

0. 本推定の特定化を決める。

1. 特定化をもとにシミュレーションデータの生成過程の記述といくつか想定した環境を作るパラメタでデータセット生成

 1.1. そのシミュレーションデータでの比較静学(構造パラメタを動かして挙動確認)

 1.2. そのシミュレーションデータでの識別のチェックとfinite sampleでの推定精度検証

2. 本推定の特定化をもとに実データを使った構造推定モデルの推定

    2.1. 推定結果のひとつ(preferred specification)を元にした反実仮想を複数

工程1と2で挙動がおかしい箇所があればコードのデバッグし、それでもおかしい場合は工程0の特定化を疑う。それでもおかしい場合は理論自体が不完全か、そもそも検証できるサンプルサイズではない。理想的には、工程1と2で使用される自作関数はデバッグと特定化の共通変更を考慮して共通のものであってほしいが、現実は実データと生成データのデータセット構造が異なるので、最低限の調整にとどめたい。

工程1と工程2は工程0が固定されたら、独立のPCで並行してコードを回せる。工程1.1と1.2.も、工程1が定まれば独立のPCで並行に回せる。工程2.1.も工程2が定まれば同様に独立のPCで並行に回せる。工程1と2は特定化以外は完全に独立なので、計算終了次第、該当章にレポートにすることができる。それぞれの工程が数日かかったりするので、できるだけ「物理的な」作業の並列化で効率化するのもいまだに大事。

 

単著の場合は、ひとまずこれが現在のベストプラクティス。指導教官からは「とにかくシンプルな特定化にこだわること」を何度も指摘されたので、最初から欲を出さず解けるところを広げていくのがよいのだろう。

 

反実仮想のアイデア: Igami, M. (2017). Estimating the innovator’s dilemma: Structural analysis of creative destruction in the hard disk drive industry, 1981–1998. Journal of Political Economy, 125(3), 798-847.

 

描きたい反実仮想を具体的にイメージしよう。

 

Igami, M. (2017). Estimating the innovator’s dilemma: Structural analysis of creative destruction in the hard disk drive industry, 1981–1998. Journal of Political Economy, 125(3), 798-847.

 

Abstractにまとめられた反実仮想の結果は以下。

The results suggest that despite strong preemptive motives and a substantial cost advantage over entrants, cannibalization makes incumbents reluctant to innovate, which can explain at least 57 percent of the incumbent-entrant innovation gap.

 

この答えを得るためにバックワードで順に組み立てていく。

1. 答えたい問い:why incumbents are slower than entrants in innovation. 

2.答えたい反実仮想政策:CS+PS+FCと合計の厚生評価

(1) Broad Patent on new HDD: 最初の1社しかnew HDDを作れない(patentを作ってしまい他社は追随できない)設定で解き直せば良さそう。

(2) License Fee: 25%, 50%, 75%をpatent holderに持ってかれるprofitに変えて解き直せばよさそう。

(WPのみのアイデア)R&D Subsidy (Experiment 2=innovation costをゼロに), Banning Non-compete Clauses (競業避止義務 Experiment 3), No International Trade (Experiment 4)

3. 最終的に示したい図: 論文内のFig 6と Fig 7を作る前のイメージ「Y軸は企業数で、X軸は時系列で、企業タイプごとに違うdynamicsが見たい」

f:id:ohtanilson:20210612100139p:plain

 

f:id:ohtanilson:20210612100207p:plain

 

4. 問いに答えるためにモデルに入れたい要素(anecdotal evidenceとfeasibilityから考える):

(0)そもそも厚生評価するのでそれができる需要供給モデル選ぶ。

(1). cannibalization: incumbentはinnovationという選択肢を持たない設定に変えてやればそう解釈できそう。action setからこれを除いて解き直せばいけそう。

(2). preemption: incumbentのinnovationという選択(の総数)がentrantのentry actionに影響しないようにすればそう解釈できそう。状態変数からnumber of incumbent innovationを消す(=0にして、innovationしてない群にカウントしてやる)解き直せばいけそう。

(3). heterogeneous sunk costs:推定したentrant's entry costを上限として0に近づけて解き直せばいけそう。

 

 

 

 

 

反実仮想アイデア:Nishiwaki, M. (2016). Horizontal mergers and divestment dynamics in a sunset industry. The RAND Journal of Economics, 47(4), 961-997.

描きたい反実仮想を具体的にイメージしよう。

 

Abstractにまとめられた反実仮想の結果は以下。

Using the case ofmergers in the Japanese cement industry, it examines whether such merger-induced divestment improves total welfare based on a dynamic model of divestment. The findings suggest that merged firms indeed tended to reduce capital more actively and that, as a result of these mergers, total welfare improved despite a reduction in the consumer surplus.

 

この答えを得るためにバックワードで順に組み立てていく。

1. 答えたい問い:how would exogenous merger affect dynamic firm's divestment decisions

2.答えたい反実仮想政策:プラント(service station)の数+efficiency+FC+厚生(CS+PS+TS)

(1)現実の複数あるうちの二企業を合併させたとき、合併後の企業行動はどう変わるか、MPEを再計算

(2)Demandの変動

3. 最終的に示したい図: 「合併ペアごとのプラント数の変化と企業効率性」

 

f:id:ohtanilson:20210629142130p:plain


4. 問いに答えるためにモデルに入れたい要素(anecdotal evidenceとfeasibilityから考える):

(1) divestment decisionが複数プラント閉鎖を許した順序離散選択(CCP)とランダムなスクラップバリュー。

(2) そもそも厚生評価できるモデル。MPE解ける複雑さ。Terminal stateが見える特殊設定でbackwardで解けるようになることをうまく利用できそう。

(3) region-firm fixed effectが合併前後の企業の効率性を示しているとすればOK